

Development of a Low-Dose Challenge Model for Evaluation of Vaccines for Enterotoxigenic *E.coli* (ETEC) in Volunteers

Clayton Harro, Barbara DeNearing, Alicia Marcum, Andrea Feller, Subhra Chakraborty, Barbora Hnizda, August Bourgeois, Richard Walker, Anna Lundgren, Ann-Mari Svennerholm, and David Sack.

Affiliations:

•Johns Hopkins Bloomberg School of Public Health, Center for Immunization Research, Baltimore, MD

•PATH, Washington DC

•University of Gothenburg, Gothenburg Sweden

Background: Enteric Disease Challenge Models

- Variety of ETEC challenge models evaluated since 1970s
- Most extensively studied strain: ETEC H10407 (Serotype 078:K80:H11)
 - >250 subjects challenged
 - Induces reliable AR at doses $\ge 5 \times 10^8$
 - Suitable for vaccine efficacy studies: LT, ST, CFA I

ETEC Challenge Models

- Concern that traditional challenge inoculum artificially high relative to natural exposure
 - May lead to false conclusion that candidate vaccine not protective
 - Other bacterial challenge models typically have lower HD₅₀
- Historically, lowering H10407 inoculum dose has yielded inconsistent AR

Study Objectives

- Identify an H10407 inoculum dose <10⁸ that will cause diarrhea in 50% or more subjects
- Determine if recent challenge with lower doses or modified delivery approach still protects upon re-challenge
- Measure mucosal and systemic immune responses in naïve and immune subjects using comprehensive assay array
- Determine if mucosal and systemic immune responses predict protection

Study Design Variables

- 1. Fasting conditions
 - Overnight fast
 - Animal data suggest increased colonization
 - Observational data suggest higher virulence
- 2. Buffer
 - Bicarbonate buffer
 - Ceravacx®
 - Rice-based bicarbonate/citrate buffer
 - Equivalent gastric acid buffering
 - Rapidly absorbed in glucose-mediated transport
- 3. Challenge dose

p://www.ceraproductsinc.com/productline/ceravacx.html

Methods

- Regulatory approvals obtained January/February 2009
- Recruited healthy volunteers
 - 18-45 yrs
 - No exposure to ETEC, cholera, or LT \geq 5 years
- Admitted in 3 separate cohorts
 - Cohort 1 February 2009
 - Cohort 2 March 2009
 - Cohort 3 May 2009
- NPO after midnight
- Challenge ~9 hours later
 - 120 mL buffer
 - 30 mL buffer with challenge inoculum

Subject Demographics

		Cohort 1 N=20	Cohort 2 N=15	Cohort 3 N=10*	TOTAL N=45
Male		14 (70%)	11 (73%)	5 (50%)	30 (67%)
Race					
	African American	14 (70%)	11 (73%)	9 (90%)	34 (76%)
	White	4 (20%)	4 (27%)	1 (10%)	9 (20%)
	Other	2 (10%)	0	0	2 (4%)
Age					
-	Mean, yrs	30.3	33.6	29.1	31.1
	Range	19-45	19-43	21-41	19-45

* Includes naïve subjects only. Total number of subjects enrolled in Cohort 3 = 20

Medical Monitoring

- Daily history and physical exam
- Collection and grading of all stools
 - Grade 1: Firm, formed (normal)
 - Grade 2: Soft, formed (normal)
 - Grade 3: Viscous, opaque liquid assuming shape of container
 - Grade 4: Watery, non-viscous opaque liquid
 - Grade 5: Clear or translucent watery or mucoid liquid
- Medical management of clinical signs and symptoms
- Independent Medical Monitor

Cohort 1 Results

Cohort 1:

1A (n=5) $1x10^{8}$ (cfu) with Bicarbonate 1B (n=5) $1x10^{8}$ (cfu) with CeraVacx®

1C (n=5) $1x10^{7}$ (cfu) with Bicarbonate

1D (n=5) $1x10^{7}$ (cfu) with CeraVacx®

H10407 Challenge Dose	Delivery Vehicle	Diarrhea ¹ (N)/Challenged (N)	Attack Rate (%)
2x10 ⁸ (Cohort 1A)	Bicarbonate	5/5	100
2x10 ⁸ (Cohort 1B)	Ceravacx®	4/4*	100
2x10 ⁷ (Cohort 1C)	Bicarbonate	4/5	80
2x10 ⁷ (Cohort 1D)	Ceravacx®	5/5	100

¹ Diarrhea defined as:

- 1 or more loose stools (\geq Grade 3) of \geq 300 grams

- 2 or more loose stools (\geq Grade 3) of \geq 200 grams in a 48 hour period

*One subject withdrawn due to noncompliance

Cohort 2

- Rationale

 AR similar across
 groups in Cohort 1
- Strategy
 - Lower dose: 10⁷cfu
 - Traditional buffer: Bicarbonate

Cohort 1:

1A (n=5) $2x10^8$ (cfu) with Bicarbonate 1B (n=5) $2x10^8$ (cfu) with CeraVacx® 1C (n=5) $2x10^7$ (cfu) with Bicarbonate 1D (n=5) $2x10^7$ (cfu) with CeraVacx®

Steering Committee

Cohort 2B (n=15) $2x10^{7}$ (cfu) with Bicarbonate

Cohort 2 Results

Confirmed trends observed in Cohort 1

— Attack Rate \geq 50% of challenged subjects

— Disease severity comparable to higher dose challenge

H10407	Buffer	Severity of Diarrhea ¹			
Dose		None	Mild	Mod-Severe ²	
2x10 ⁷	Bicarbonate	4	0	11 (73%)	

¹ Diarrhea defined as:

1 or more loose stools (> Grade 3) of >300 grams
2 or more loose stools (> Grade 3) of >200 grams in a 48 hour period

 2 Classification based on peak stool number or weight in a 24 hour period - Moderate: 4-5 stools/24 hrs or 401-800 grams/24 hrs - Severe: \geq 6 stools/24 hrs or >800 grams/24 hrs

Cohort 3 Results

 $2x10^{7}$ (cfu) with Bicarbonate

Combined Outcomes for Subjects Challenged using H10407 Inoculum

Dose	Buffer	Diarrhea ¹		Average	Corby Dy	1\/	
(Cohort)		None	Mild	Mod-Sev ²	Incubation	Early RX	IV
2x10 ⁷ (Cohort 1)	Bicarbonate N=5	1	0	4 (80%)	43 hrs	3 (60%)	1 (20%)
2x10 ⁷ (Cohort 1)	CeraVacx® N=5	0	0	5 (100%)	64 hrs	3 (60%)	1 (20%)
2x10 ⁷ (Cohort 2)	Bicarbonate N=15	4	0	11 (73%)	52 hrs	10 (67%)	2 (13%)
2x10 ⁷ (Cohort 3)	Bicarbonate N=10	1	2	7 (70%)	57 hrs	5 (50%)	4 (40%)
2x10 ⁷ (TOTAL)	N=35	6	2	27 (77%)	54 hrs	21 (60%)	8 (23%)

¹ Diarrhea defined as:

- 1 or more loose stools (> Grade 3) of >300 grams
 2 or more loose stools (> Grade 3) of >200 grams in a 48 hour period

²Classification based on peak stool number or weight in a 24 hour period - Moderate: 4-5 stools/24 hrs **or** 401-800 grams/24 hrs - Severe: \geq 6 stools/24 hrs **or** >800 grams/24 hrs

Challenge Strain Shedding

	Number of subjects	Shedding	GeoMean Max. Concentration
Cohort 1*	19	100%	1x10 ⁸
Cohort 2	15	100%	1x10 ⁸
Cohort 3 (first challenge)	10	90%	1x10 ⁸
Cohort 3 (second challenge)	10	90%	3x10 ⁶

* No difference in excretion pattern between subgroups of cohort 1

Seroconversion Rates to H10407 virulence antigens following challenge

Increase in Serum GMT anti-LPS Titers on Day 10 Following Challenge with H10407 (\log_{10})

A catalyst for global health

Responses to CFA and LTB

- Late-Breaker Poster for Details
- Serum responses to CFA and LTB were infrequent and low in magnitude
- ALS responses were common and higher, reflecting intestinal immune responses.
- Peak ALS responses were generally on day 7

Summary

- Combined data validate that ETEC H10407 10⁷cfu with overnight fast induces:
 - Longer incubation period
 - Reproducible AR \geq 75%
 - Similar disease severity as higher dose models
- Change in fasting conditions does not alter induction of protective immunity
- Homologous protection confirmed with lower dose model
- Re-challenge data provide opportunity to further explore antigenic determinants of immunity
- Very high and consistent serological responses to LPS, less vigorous responses to CFA and LTB

Acknowledgments

- JHSPH Center for Immunization Research
 - Barbara DeNearing
 - Alicia Marcum
 - Arlene Bloom
 - Ruval Comendador
 - Sabrina Drayton-Weaver
 - Tiara Weeks
 - Paula Williams-Soro

JHSPH Enterics Research Lab

- David Sack
- Subhra Chakraborty
- Andrea Feller
- Barbora Hnizda
- George Gomez
- Fatuma Mawanda

- Monitoring and data management
 - Karen Charron
 - Amber Cox
 - Malathi Ram
 - Lawrence Moulton
 - C-TASC
- PATH
 - Richard Walker
 - August Bourgeois
 - Lillian Van De Verg
- University of Gothenburg, Sweden
 - Anna Lundgren
 - Ann-Mari Svennerholm
- WRAIR
 - Pilot Bioproduction Facility

